0引言
光伏-儲能一體化系統(tǒng)作為一種新型的可再生能源利用方式,因其綠色環(huán)保、可持續(xù)性強等優(yōu)點而受到重視。隨著系統(tǒng)規(guī)模的不斷擴大和應用場景的增多,系統(tǒng)的運行安全、穩(wěn)定性和維護效率成為亟待解決的問題。物聯(lián)網技術的引入為遠程監(jiān)測與故障診斷提供了新的解決方案。物聯(lián)網技術通過智能傳感器、通信技術和云計算等手段,實現(xiàn)對系統(tǒng)的實時數據采集、傳輸和分析,從而及時發(fā)現(xiàn)并處理可能出現(xiàn)的問題。本文旨在探討如何將物聯(lián)網技術應用于光伏-儲能一體化系統(tǒng),實現(xiàn)其遠程監(jiān)測與故障診斷功能的優(yōu)化。
1光伏-儲能系統(tǒng)的重要性與發(fā)展趨勢
光伏-儲能系統(tǒng)作為新能源領域的重要組成部分,其重要性在于它能夠有效地將太陽能這種清潔、可再生的能源轉換為電能,并通過儲能設施解決了太陽能發(fā)電的間歇性問題,提升了能源的利用效率和系統(tǒng)的供電可靠性。隨著全球對于環(huán)境保護意識的加強和對傳統(tǒng)化石能源依賴的減少,光伏-儲能系統(tǒng)在能源結構轉型中發(fā)揮著越來越重要的作用。該系統(tǒng)不僅能夠減少溫室氣體排放,緩解全球氣候變暖問題,而且還能夠為偏遠地區(qū)和電網不穩(wěn)定地區(qū)提供穩(wěn)定的電力供應,促進社會經濟的可持續(xù)發(fā)展。
技術創(chuàng)新不斷推動光伏發(fā)電效率的提升和儲能成本的降低。例如,光伏電池材料的研究開發(fā)正朝著更有效率、更低成本的方向發(fā)展,如鈣鈦礦太陽能電池等新型材料的出現(xiàn)。同時,儲能技術也在不斷進步,鋰離子電池的能量密度提高,成本下降,其他類型的儲能技術如液流電池、壓縮空氣儲能等也在不斷地被研究和開發(fā)。系統(tǒng)集成和智能化水平的提高。隨著物聯(lián)網和人工智能技術的發(fā)展,光伏-儲能系統(tǒng)越來越多地采用智能監(jiān)控和管理技術,實現(xiàn)了系統(tǒng)運行的*優(yōu)化,提高了能源的使用效率和系統(tǒng)的運行穩(wěn)定性。系統(tǒng)能夠根據天氣變化、用戶需求和電價變動等因素自動調整發(fā)電和儲能策略,實現(xiàn)經濟效益的*大化。
2光伏-儲能一體化系統(tǒng)架構
2.1光伏發(fā)電系統(tǒng)介紹
光伏-儲能一體化系統(tǒng)的核心組成部分是光伏發(fā)電系統(tǒng),它利用太陽能電池板將太陽輻射能轉換為直流電能。這種轉換過程是通過半導體材料的光電效應來實現(xiàn)的,當太陽光照射到光伏電池板上時,光子與半導體中的電子相互作用產生電流。光伏發(fā)電系統(tǒng)通常包括光伏電池板、支架、逆變器、監(jiān)控設備以及配套的電纜和接線盒等組件。光伏電池板是系統(tǒng)通常由多個光伏電池串聯(lián)或并聯(lián)組成,以提供所需的電壓和電流。光伏電池的效率和質量直接決定了整個系統(tǒng)的發(fā)電效率和穩(wěn)定性。目前,市場上常見的光伏電池主要有單晶硅、多晶硅和薄膜三種類型,各有其特點和適用環(huán)境。
2.2 儲能系統(tǒng)的作用
光伏-儲能一體化系統(tǒng)是一種集成了光伏發(fā)電與電力儲存的**能源系統(tǒng)。在這個系統(tǒng)中,儲能系統(tǒng)(起著至關重要的作用。由于太陽能發(fā)電具有天氣依賴性和日夜周期性,因此其產生的電力供應并不穩(wěn)定。這就是儲能系統(tǒng)發(fā)揮作用的地方。儲能系統(tǒng),通常采用諸如鋰離子電池或鉛酸電池等電池儲能技術,可以在光伏發(fā)電產生過剩電力時儲存電能,并在無陽光或需求高峰期釋放電能,從而確保電力供應的連續(xù)性和穩(wěn)定性。
2.3 一體化系統(tǒng)的優(yōu)勢
光伏-儲能一體化系統(tǒng)的核心優(yōu)勢在于其能夠將太陽能發(fā)電與能量存儲緊密結合,形成一個既能夠有效轉換也能夠靈活應對各種供電需求的系統(tǒng)。這樣的系統(tǒng)不僅能夠在白天將太陽能轉換為電能,還能通過儲能設備存儲多余的電能,以供夜間或陰雨天氣使用,有效地解決了傳統(tǒng)光伏系統(tǒng)受自然條件限制而產生的間歇性問題。具體來說,一體化系統(tǒng)中的光伏板將太陽能轉換為電能的效率可以表示為:
式中,Pout是從光伏板輸出的功率,而Ein是入射到光伏板上的太陽能總量。
此外,一體化系統(tǒng)可以根據實際用電需求動態(tài)調節(jié)電力輸出,這一點是通過智能管理系統(tǒng)實現(xiàn)的,它能夠監(jiān)控用戶的用電模式和預測電力需求,進而優(yōu)化光伏發(fā)電和儲能設備的工作狀態(tài)。例如,當預測到用電需求增加時,系統(tǒng)可以提前儲存更多的電能,以滿足即將到來的高峰時段。這種智能調節(jié)可以用以下公式概括:
Pstored(t+1)=Pstored(t)+Pcharge(t)-Pdischarge(t)
式中,Pstored表示當前儲存的電能量,Pcharge和Pdischarge分別表示在時間t的充電和放電功率。
對于偏遠地區(qū)或電網不穩(wěn)定的地方,光伏-儲能一體化系統(tǒng)更是一種理想的解決方案,因為它能夠獨立于傳統(tǒng)電網運行,為用戶提供穩(wěn)定和可靠的電力供應。隨著儲能技術的進步,如鋰離子電池的能量密度提升和成本下降,一體化系統(tǒng)的經濟性得到了顯著提高。儲能設備的成本效益可以通過其循環(huán)壽命和單位能量成本來評估:
式中,Cstorage是儲能設備的總成本,N是設備的循環(huán)次數,Ecapacity是每次循環(huán)能夠提供的電能量。
3遠程監(jiān)測技術
3.1 傳感器技術與數據采集
遠程監(jiān)測技術在光伏-儲能一體化系統(tǒng)中扮演著至關重要的角色,它使得系統(tǒng)的智能化運維成為可能。通過集成了**的傳感器技術、數據通信手段以及云平臺的大數據處理能力,遠程監(jiān)測技術能夠實現(xiàn)對整個系統(tǒng)狀態(tài)的實時監(jiān)控和管理。這種技術的實施,依賴于一系列*密的傳感器,它們持續(xù)地從系統(tǒng)的各個關鍵節(jié)點收集數據,這些節(jié)點包括光伏板、逆變器和儲能設備等。傳感器技術提供的數據是多方面的,涵蓋了環(huán)境信息和設備性能指標。例如,溫度傳感器可以監(jiān)測光伏板和儲能設備的溫度,其輸出電壓V與溫度T之間的關系可以用以下公式表示:
式中,a,b,c,是根據傳感器特性確定的系數,T是溫度。電流和電壓傳感器則可以監(jiān)測光伏系統(tǒng)的電氣性能,使用歐姆定律來描述電路中的電流I,電壓V和電阻R之間的關系V=IR而光照傳感器能夠測量太陽光的強度,從而評估光伏板的發(fā)電潛力,其輸出電流I與入射光強度E之間的關系可以近似為:I=kE式中,k是傳感器的響應系數。通過這些傳感器收集的數據,系統(tǒng)能夠實時監(jiān)測設備的工作狀態(tài)和環(huán)境條件,為系統(tǒng)的優(yōu)化運行提供決策支持。數據通信手段確保了這些數據能夠實時傳輸到云平臺進行處理和分析,這通常涉及到數據的加密和解密過程,其數學模型可以表示為:
式中,(P代表原始數據,(C代表加密后的數據,(E_k是加密函數,(D_k是解密函數,(k是密鑰。云平臺則負責處理這些數據,運用**的數據分析方法,如機器學習算法,來預測系統(tǒng)的運行趨勢和潛在的維護需求。這些分析可能會涉及到復雜的數學模型,如回歸分析、時間序列分析等,一個簡單的線性回歸模型可以表示為:
式中,y是響應變量,x1,x2,xn是解釋變量,β0,β1,βn是模型參數,?是誤差項。
3.2 數據通信方式
采集到的數據需要通過可靠的數據通信方式傳輸至監(jiān)控*心或云平臺。數據通信可以通過有線網絡如以太網,也可以通過無線方式如蜂窩網絡、衛(wèi)星通信或者Wi-Fi進行。在一些偏遠或者不方便布線的地區(qū),無線通信方式更顯其便利性和靈活性。隨著物聯(lián)網技術的發(fā)展,低功耗廣域網(LPWAN)技術如LoRa和NB-IoT等也開始被越來越多地應用于遠程監(jiān)測系統(tǒng)中,這些技術特別適合于傳輸小數據量的場景,具有覆蓋范圍廣、功耗低等優(yōu)點。數據通信方式具體特點見表。
表1數據通信方式特點
3.3 云平臺與數據處理
當數據通過通信網絡成功傳輸到云平臺后,接下來就是數據處理階段。云平臺具備強大的數據存儲和計算能力,可以對海量數據進行處理和分析。通過**的數據處理算法,比如機器學習和人工智能技術,云平臺不僅能夠實現(xiàn)對數據的實時監(jiān)控,還能夠進行故障預測、性能分析和優(yōu)化建議等高*功能。此外,用戶可以通過云平臺提供的接口,隨時隨地通過電腦或移動設備查看系統(tǒng)狀態(tài),實現(xiàn)遠程控制和管理,大幅提升了系統(tǒng)的運維效率和智能水平。物聯(lián)網技術的光伏云平臺與數據處理系統(tǒng)見圖1
圖1物聯(lián)網技術的光伏云平臺與數據處理系統(tǒng)
4故障診斷方法
4.1故障檢測技術
故障診斷方法在現(xiàn)代工業(yè)和技術系統(tǒng)中扮演著至關重要的角色,尤其是在需要長時間穩(wěn)定運行的復雜系統(tǒng)中,如光伏-儲能一體化系統(tǒng)。故障檢測技術是故障診斷的起點,它通過監(jiān)測設備的運行狀態(tài)和環(huán)境參數來捕捉可能的異常信號。這些信號可能表現(xiàn)為數據的突然變化,如溫度急劇升高、電流電壓波動超出正常范圍等,也可能是性能指標的逐漸下降,如光伏板的發(fā)電效率降低。傳感器在這里發(fā)揮著基礎作用,它們實時收集關鍵數據并將其傳輸給分析系統(tǒng)。光伏故障檢測技術系統(tǒng)見圖2。
2光伏故障檢測技術系統(tǒng)
4.2優(yōu)化效果評估和分析
主要對準確率、召回率、F1分數、計算時間、誤報率等參數加以評估。評估方法為,將優(yōu)化后的模型應用到實際運行數據中,并對比優(yōu)化前后的模型性能指標。同時,進行大量實驗以驗證優(yōu)化方法的可行性和有效性。繼而對比實驗結果和分析數據,發(fā)現(xiàn)優(yōu)化后的模型在準確率、召回率、F1分數等方面都有明顯提高,而計算時間和誤報率也有所降低。這便表明,優(yōu)化方法能有效地提高水電站電氣裝置故障運行狀態(tài)自動捕捉方法的準確性和效率。
5安科瑞Acrel-2000MG微電網能量管理系統(tǒng)
5.1概述
Acrel-2000MG儲能能量管理系統(tǒng)是安科瑞專門針對工商業(yè)儲能電站研制的本地化能量管理系統(tǒng),可實現(xiàn)了儲能電站的數據采集、數據處理、數據存儲、數據查詢與分析、可視化監(jiān)控、報警管理、統(tǒng)計報表、策略管理、歷史曲線等功能。其中策略管理,支持多種控制策略選擇,包含計劃曲線、削峰填谷、需量控制、防逆流等。該系統(tǒng)不僅可以實現(xiàn)下*各儲能單元的統(tǒng)一監(jiān)控和管理,還可以實現(xiàn)與上*調度系統(tǒng)和云平臺的數據通訊與交互,既能接受上*調度指令,又可以滿足遠程監(jiān)控與運維,確保儲能系統(tǒng)安全、穩(wěn)定、可靠、經濟運行。
5.2應用場景
適用于工商業(yè)儲能電站、新能源配儲電站。
5.3系統(tǒng)結構
5.4系統(tǒng)功能
(1)實時監(jiān)管
對微電網的運行進行實時監(jiān)管,包含市電、光伏、風電、儲能、充電樁及用電負荷,同時也包括收益數據、天氣狀況、節(jié)能減排等信息。
(2)智能監(jiān)控
對系統(tǒng)環(huán)境、光伏組件、光伏逆變器、風電控制逆變一體機、儲能電池、儲能變流器、用電設備等進行實時監(jiān)測,掌握微電網系統(tǒng)的運行狀況。
(3)功率預測
對分布式發(fā)電系統(tǒng)進行短期、超短期發(fā)電功率預測,并展示合格率及誤差分析。
(4)電能質量
實現(xiàn)整個微電網系統(tǒng)范圍內的電能質量和電能可靠性狀況進行持續(xù)性的監(jiān)測。如電壓諧波、電壓閃變、電壓不平衡等穩(wěn)態(tài)數據和電壓暫升/暫降、電壓中斷暫態(tài)數據進行監(jiān)測分析及錄波展示,并對電壓、電流瞬變進行監(jiān)測。
(5)可視化運行
實現(xiàn)微電網無人值守,實現(xiàn)數字化、智能化、便捷化管理;對重要負荷與設備進行不間斷監(jiān)控。
(6)優(yōu)化控制
通過分析歷史用電數據、天氣條件對負荷進行功率預測,并結合分布式電源出力與儲能狀態(tài),實現(xiàn)經濟優(yōu)化調度,以降低尖峰或者高峰時刻的用電量,降低企業(yè)綜合用電成本。
(7)收益分析
用戶可以查看光伏、儲能、充電樁三部分的每天電量和收益數據,同時可以切換年報查看每個月的電量和收益。
(8)能源分析
通過分析光伏、風電、儲能設備的發(fā)電效率、轉化效率,用于評估設備性能與狀態(tài)。
(9)策略配置
微電網配置主要對微電網系統(tǒng)組成、基礎參數、運行策略及統(tǒng)計值進行設置。其中策略包含計劃曲線、削峰填谷、需量控制、新能源消納、逆功率控制等。
6硬件及其配套產品
序號 | 設備 | 型號 | 圖片 | 說明 |
1 | 能量管理系統(tǒng) | Acrel-2000MG |
| 內部設備的數據采集與監(jiān)控,由通信管理機、工業(yè)平板電腦、串口服務器、遙信模塊及相關通信輔件組成。 數據采集、上傳及轉發(fā)至服務器及協(xié)同控制裝置 策略控制:計劃曲線、需量控制、削峰填谷、備用電源等 |
2 | 顯示器 | 25.1英寸液晶顯示器 |
| 系統(tǒng)軟件顯示載體 |
3 | UPS電源 | UPS2000-A-2-KTTS |
| 為監(jiān)控主機提供后備電源 |
4 | 打印機 | HP108AA4 |
| 用以打印操作記錄,參數修改記錄、參數越限、復限,系統(tǒng)事故,設備故障,保護運行等記錄,以召喚打印為主要方式 |
5 | 音箱 | R19U |
| 播放報警事件信息 |
6 | 工業(yè)網絡交換機 | D-LINKDES-1016A16 |
| 提供16口百兆工業(yè)網絡交換機解決了通信實時性、網絡安全性、本質安全與安全防爆技術等技術問題 |
7 | GPS時鐘 | ATS1200GB |
| 利用gps同步衛(wèi)星信號,接收1pps和串口時間信息,將本地的時鐘和gps衛(wèi)星上面的時間進行同步 |
8 | 交流計量電表 | AMC96L-E4/KC |
| 電力參數測量(如單相或者三相的電流、電壓、有功功率、無功功率、視在功率,頻率、功率因數等)、復費率電能計量、 四象限電能計量、諧波分析以及電能監(jiān)測和考核管理。多種外圍接口功能:帶有RS485/MODBUS-RTU協(xié)議:帶開關量輸入和繼電器輸出可實現(xiàn)斷路器開關的"遜信“和“遙控”的功能 |
9 | 直流計量電表 | PZ96L-DE |
| 可測量直流系統(tǒng)中的電壓、電流、功率、正向與反向電能??蓭S485通訊接口、模擬量數據轉換、開關量輸入/輸出等功能 |
10 | 電能質量監(jiān)測 | APView500 |
| 實時監(jiān)測電壓偏差、頻率俯差、三相電壓不平衡、電壓波動和閃變、諾波等電能質量,記錄各類電能質量事件,定位擾動源。 |
11 | 防孤島裝置 | AM5SE-IS |
| 防孤島保護裝置,當外部電網停電后斷開和電網連接 |
12 | 箱變測控裝置 | AM6-PWC |
| 置針對光伏、風能、儲能升壓變不同要求研發(fā)的集保護,測控,通訊一體化裝置,具備保護、通信管理機功能、環(huán)網交換機功能的測控裝置 |
13 | 通信管理機 | ANet-2E851 |
| 能夠根據不同的采集規(guī)的進行水表、氣表、電表、微機保護等設備終端的數據果集匯總: 提供規(guī)約轉換、透明轉發(fā)、數據加密壓縮、數據轉換、邊緣計算等多項功能:實時多任務并行處理數據采集和數據轉發(fā),可多鏈路上送平臺據: |
14 | 串口服務器 | Aport |
| 功能:轉換“輔助系統(tǒng)"的狀態(tài)數據,反饋到能量管理系統(tǒng)中。 1)空調的開關,調溫,及完*斷電(二次開關實現(xiàn)) 2)上傳配電柜各個空開信號 3)上傳UPS內部電量信息等 4)接入電表、BSMU等設備 |
15 | 遙信模塊 | ARTU-K16 |
| 1)反饋各個設備狀態(tài),將相關數據到串口服務器: 讀消防VO信號,并轉發(fā)給到上層(關機、事件上報等) 2)采集水浸傳感器信息,并轉發(fā)3)給到上層(水浸信號事件上報) 4)讀取門禁程傳感器信息,并轉發(fā) |
7結束語
綜上所述,本文研究的水電站電氣裝置故障運行狀態(tài)自動捕捉方法,通過實時監(jiān)測電氣裝置的運行狀態(tài),利用卷積神經網絡(CNN)模型對采集的數據進行學習和預測,實現(xiàn)了對故障的早期發(fā)現(xiàn)和準確定位。不過,該方法仍存在一些局限性,例如,對于某些復雜故障類型的識別精度還有待提高。未來還需引入更**的深度學習模型,如變分自編碼器(VAE)或生成對抗網絡(GAN)等,以提高故障類型的識別精度和泛化能力;結合多源信息,如設備狀態(tài)監(jiān)測數據、運行日志等,以更好地評估電氣裝置的運行狀態(tài);考慮將本方法應用于其他類型的能源設備或工業(yè)設備中,拓展其應用范圍;對大容量、高維度數據的處理方法進行深入研究,以進一步提高模型的訓練效率和泛化能力。
隨著深度學習技術的發(fā)展,未來會將多種不同模態(tài)的監(jiān)測數據融合在一起,保證故障檢測的準確性和好性。在互聯(lián)網和物聯(lián)網技術的綜合應用下,可有效實現(xiàn)水電站電氣裝置的遠程監(jiān)控和診斷,強化故障響應速度和維修效率。該種方法的推廣和應用前景廣闊,對于提高水電站的安全性、可靠性和運行效率具有重要意義,為水電站的智能化發(fā)展提供更加有力的支持。
參考文獻
[1]黎庚榮.“四步測試法”在電氣裝置短路故障識別排查中的應用探討[J].紅水河,2021,40(2):84-89.
[2]常碩,梁杰,姜久超.基于模擬退火算法的水電站電氣裝置故障運行狀態(tài)自動捕捉方法[J].水利水電技術(中英文),2022,53(3):110-118.
[3]辛清松.基于物聯(lián)網技術的光伏-儲能一體化系統(tǒng)遠程監(jiān)測與故障診斷研究
[4]安科瑞企業(yè)微電網設計與應用手冊.2022年05版